3.31 \(\int (a+b \cot ^2(c+d x))^{5/2} \, dx\)

Optimal. Leaf size=171 \[ -\frac {\sqrt {b} \left (15 a^2-20 a b+8 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)}}\right )}{8 d}-\frac {b \cot (c+d x) \left (a+b \cot ^2(c+d x)\right )^{3/2}}{4 d}-\frac {b (7 a-4 b) \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)}}{8 d}-\frac {(a-b)^{5/2} \tan ^{-1}\left (\frac {\sqrt {a-b} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)}}\right )}{d} \]

[Out]

-(a-b)^(5/2)*arctan(cot(d*x+c)*(a-b)^(1/2)/(a+b*cot(d*x+c)^2)^(1/2))/d-1/4*b*cot(d*x+c)*(a+b*cot(d*x+c)^2)^(3/
2)/d-1/8*(15*a^2-20*a*b+8*b^2)*arctanh(cot(d*x+c)*b^(1/2)/(a+b*cot(d*x+c)^2)^(1/2))*b^(1/2)/d-1/8*(7*a-4*b)*b*
cot(d*x+c)*(a+b*cot(d*x+c)^2)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {3661, 416, 528, 523, 217, 206, 377, 203} \[ -\frac {\sqrt {b} \left (15 a^2-20 a b+8 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)}}\right )}{8 d}-\frac {b \cot (c+d x) \left (a+b \cot ^2(c+d x)\right )^{3/2}}{4 d}-\frac {b (7 a-4 b) \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)}}{8 d}-\frac {(a-b)^{5/2} \tan ^{-1}\left (\frac {\sqrt {a-b} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cot[c + d*x]^2)^(5/2),x]

[Out]

-(((a - b)^(5/2)*ArcTan[(Sqrt[a - b]*Cot[c + d*x])/Sqrt[a + b*Cot[c + d*x]^2]])/d) - (Sqrt[b]*(15*a^2 - 20*a*b
 + 8*b^2)*ArcTanh[(Sqrt[b]*Cot[c + d*x])/Sqrt[a + b*Cot[c + d*x]^2]])/(8*d) - ((7*a - 4*b)*b*Cot[c + d*x]*Sqrt
[a + b*Cot[c + d*x]^2])/(8*d) - (b*Cot[c + d*x]*(a + b*Cot[c + d*x]^2)^(3/2))/(4*d)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 528

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
(f*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(n*(p + q + 1) + 1)), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 3661

Int[((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x]
, x]}, Dist[(c*ff)/f, Subst[Int[(a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ
[{a, b, c, e, f, n, p}, x] && (IntegersQ[n, p] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps

\begin {align*} \int \left (a+b \cot ^2(c+d x)\right )^{5/2} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {\left (a+b x^2\right )^{5/2}}{1+x^2} \, dx,x,\cot (c+d x)\right )}{d}\\ &=-\frac {b \cot (c+d x) \left (a+b \cot ^2(c+d x)\right )^{3/2}}{4 d}-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b x^2} \left (a (4 a-b)+(7 a-4 b) b x^2\right )}{1+x^2} \, dx,x,\cot (c+d x)\right )}{4 d}\\ &=-\frac {(7 a-4 b) b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)}}{8 d}-\frac {b \cot (c+d x) \left (a+b \cot ^2(c+d x)\right )^{3/2}}{4 d}-\frac {\operatorname {Subst}\left (\int \frac {a \left (8 a^2-9 a b+4 b^2\right )+b \left (15 a^2-20 a b+8 b^2\right ) x^2}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\cot (c+d x)\right )}{8 d}\\ &=-\frac {(7 a-4 b) b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)}}{8 d}-\frac {b \cot (c+d x) \left (a+b \cot ^2(c+d x)\right )^{3/2}}{4 d}-\frac {(a-b)^3 \operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\cot (c+d x)\right )}{d}-\frac {\left (b \left (15 a^2-20 a b+8 b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\cot (c+d x)\right )}{8 d}\\ &=-\frac {(7 a-4 b) b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)}}{8 d}-\frac {b \cot (c+d x) \left (a+b \cot ^2(c+d x)\right )^{3/2}}{4 d}-\frac {(a-b)^3 \operatorname {Subst}\left (\int \frac {1}{1-(-a+b) x^2} \, dx,x,\frac {\cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)}}\right )}{d}-\frac {\left (b \left (15 a^2-20 a b+8 b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)}}\right )}{8 d}\\ &=-\frac {(a-b)^{5/2} \tan ^{-1}\left (\frac {\sqrt {a-b} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)}}\right )}{d}-\frac {\sqrt {b} \left (15 a^2-20 a b+8 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)}}\right )}{8 d}-\frac {(7 a-4 b) b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)}}{8 d}-\frac {b \cot (c+d x) \left (a+b \cot ^2(c+d x)\right )^{3/2}}{4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.69, size = 259, normalized size = 1.51 \[ -\frac {\sqrt {b} \left (15 a^2-20 a b+8 b^2\right ) \log \left (\sqrt {b} \sqrt {a+b \cot ^2(c+d x)}+b \cot (c+d x)\right )+b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)} \left (9 a+2 b \cot ^2(c+d x)-4 b\right )-4 i (a-b)^{5/2} \log \left (-\frac {4 i \left (\sqrt {a-b} \sqrt {a+b \cot ^2(c+d x)}+a-i b \cot (c+d x)\right )}{(a-b)^{7/2} (\cot (c+d x)+i)}\right )+4 i (a-b)^{5/2} \log \left (\frac {4 i \left (\sqrt {a-b} \sqrt {a+b \cot ^2(c+d x)}+a+i b \cot (c+d x)\right )}{(a-b)^{7/2} (\cot (c+d x)-i)}\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cot[c + d*x]^2)^(5/2),x]

[Out]

-1/8*(b*Cot[c + d*x]*Sqrt[a + b*Cot[c + d*x]^2]*(9*a - 4*b + 2*b*Cot[c + d*x]^2) - (4*I)*(a - b)^(5/2)*Log[((-
4*I)*(a - I*b*Cot[c + d*x] + Sqrt[a - b]*Sqrt[a + b*Cot[c + d*x]^2]))/((a - b)^(7/2)*(I + Cot[c + d*x]))] + (4
*I)*(a - b)^(5/2)*Log[((4*I)*(a + I*b*Cot[c + d*x] + Sqrt[a - b]*Sqrt[a + b*Cot[c + d*x]^2]))/((a - b)^(7/2)*(
-I + Cot[c + d*x]))] + Sqrt[b]*(15*a^2 - 20*a*b + 8*b^2)*Log[b*Cot[c + d*x] + Sqrt[b]*Sqrt[a + b*Cot[c + d*x]^
2]])/d

________________________________________________________________________________________

fricas [B]  time = 0.53, size = 1520, normalized size = 8.89 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c)^2)^(5/2),x, algorithm="fricas")

[Out]

[-1/16*(8*(a^2 - 2*a*b + b^2 - (a^2 - 2*a*b + b^2)*cos(2*d*x + 2*c))*sqrt(-a + b)*log(-(a - b)*cos(2*d*x + 2*c
) + sqrt(-a + b)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1))*sin(2*d*x + 2*c) + b)*sin(2*d
*x + 2*c) + (15*a^2 - 20*a*b + 8*b^2 - (15*a^2 - 20*a*b + 8*b^2)*cos(2*d*x + 2*c))*sqrt(b)*log(((a - 2*b)*cos(
2*d*x + 2*c) + 2*sqrt(b)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1))*sin(2*d*x + 2*c) - a
- 2*b)/(cos(2*d*x + 2*c) - 1))*sin(2*d*x + 2*c) - 2*(4*b^2*cos(2*d*x + 2*c) - 3*(3*a*b - 2*b^2)*cos(2*d*x + 2*
c)^2 + 9*a*b - 2*b^2)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1)))/((d*cos(2*d*x + 2*c) -
d)*sin(2*d*x + 2*c)), 1/16*(16*(a^2 - 2*a*b + b^2 - (a^2 - 2*a*b + b^2)*cos(2*d*x + 2*c))*sqrt(a - b)*arctan(-
sqrt(a - b)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1))*sin(2*d*x + 2*c)/((a - b)*cos(2*d*
x + 2*c) + a - b))*sin(2*d*x + 2*c) - (15*a^2 - 20*a*b + 8*b^2 - (15*a^2 - 20*a*b + 8*b^2)*cos(2*d*x + 2*c))*s
qrt(b)*log(((a - 2*b)*cos(2*d*x + 2*c) + 2*sqrt(b)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) -
 1))*sin(2*d*x + 2*c) - a - 2*b)/(cos(2*d*x + 2*c) - 1))*sin(2*d*x + 2*c) + 2*(4*b^2*cos(2*d*x + 2*c) - 3*(3*a
*b - 2*b^2)*cos(2*d*x + 2*c)^2 + 9*a*b - 2*b^2)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1)
))/((d*cos(2*d*x + 2*c) - d)*sin(2*d*x + 2*c)), -1/8*((15*a^2 - 20*a*b + 8*b^2 - (15*a^2 - 20*a*b + 8*b^2)*cos
(2*d*x + 2*c))*sqrt(-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1))*sin(2*
d*x + 2*c)/(b*cos(2*d*x + 2*c) + b))*sin(2*d*x + 2*c) + 4*(a^2 - 2*a*b + b^2 - (a^2 - 2*a*b + b^2)*cos(2*d*x +
 2*c))*sqrt(-a + b)*log(-(a - b)*cos(2*d*x + 2*c) + sqrt(-a + b)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(
2*d*x + 2*c) - 1))*sin(2*d*x + 2*c) + b)*sin(2*d*x + 2*c) - (4*b^2*cos(2*d*x + 2*c) - 3*(3*a*b - 2*b^2)*cos(2*
d*x + 2*c)^2 + 9*a*b - 2*b^2)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1)))/((d*cos(2*d*x +
 2*c) - d)*sin(2*d*x + 2*c)), 1/8*(8*(a^2 - 2*a*b + b^2 - (a^2 - 2*a*b + b^2)*cos(2*d*x + 2*c))*sqrt(a - b)*ar
ctan(-sqrt(a - b)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1))*sin(2*d*x + 2*c)/((a - b)*co
s(2*d*x + 2*c) + a - b))*sin(2*d*x + 2*c) - (15*a^2 - 20*a*b + 8*b^2 - (15*a^2 - 20*a*b + 8*b^2)*cos(2*d*x + 2
*c))*sqrt(-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1))*sin(2*d*x + 2*c)
/(b*cos(2*d*x + 2*c) + b))*sin(2*d*x + 2*c) + (4*b^2*cos(2*d*x + 2*c) - 3*(3*a*b - 2*b^2)*cos(2*d*x + 2*c)^2 +
 9*a*b - 2*b^2)*sqrt(((a - b)*cos(2*d*x + 2*c) - a - b)/(cos(2*d*x + 2*c) - 1)))/((d*cos(2*d*x + 2*c) - d)*sin
(2*d*x + 2*c))]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c)^2)^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(sin(d*x+c))]Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2
)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_no
step/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*p
i/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign
: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Evaluation time: 2Error: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.46, size = 462, normalized size = 2.70 \[ -\frac {b^{2} \left (\cot ^{3}\left (d x +c \right )\right ) \sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}}{4 d}-\frac {9 b a \cot \left (d x +c \right ) \sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}}{8 d}-\frac {15 \sqrt {b}\, a^{2} \ln \left (\cot \left (d x +c \right ) \sqrt {b}+\sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}\right )}{8 d}+\frac {b^{2} \cot \left (d x +c \right ) \sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}}{2 d}+\frac {5 b^{\frac {3}{2}} a \ln \left (\cot \left (d x +c \right ) \sqrt {b}+\sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}\right )}{2 d}-\frac {b^{\frac {5}{2}} \ln \left (\cot \left (d x +c \right ) \sqrt {b}+\sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}\right )}{d}+\frac {b \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {\left (a -b \right ) b^{2} \cot \left (d x +c \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}}\right )}{d \left (a -b \right )}-\frac {3 a \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {\left (a -b \right ) b^{2} \cot \left (d x +c \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}}\right )}{d \left (a -b \right )}+\frac {3 a^{2} \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {\left (a -b \right ) b^{2} \cot \left (d x +c \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}}\right )}{d b \left (a -b \right )}-\frac {a^{3} \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {\left (a -b \right ) b^{2} \cot \left (d x +c \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\cot ^{2}\left (d x +c \right )\right )}}\right )}{d \,b^{2} \left (a -b \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cot(d*x+c)^2)^(5/2),x)

[Out]

-1/4/d*b^2*cot(d*x+c)^3*(a+b*cot(d*x+c)^2)^(1/2)-9/8/d*b*a*cot(d*x+c)*(a+b*cot(d*x+c)^2)^(1/2)-15/8/d*b^(1/2)*
a^2*ln(cot(d*x+c)*b^(1/2)+(a+b*cot(d*x+c)^2)^(1/2))+1/2/d*b^2*cot(d*x+c)*(a+b*cot(d*x+c)^2)^(1/2)+5/2/d*b^(3/2
)*a*ln(cot(d*x+c)*b^(1/2)+(a+b*cot(d*x+c)^2)^(1/2))-1/d*b^(5/2)*ln(cot(d*x+c)*b^(1/2)+(a+b*cot(d*x+c)^2)^(1/2)
)+1/d*b*(b^4*(a-b))^(1/2)/(a-b)*arctan((a-b)*b^2/(b^4*(a-b))^(1/2)/(a+b*cot(d*x+c)^2)^(1/2)*cot(d*x+c))-3/d*a*
(b^4*(a-b))^(1/2)/(a-b)*arctan((a-b)*b^2/(b^4*(a-b))^(1/2)/(a+b*cot(d*x+c)^2)^(1/2)*cot(d*x+c))+3/d*a^2/b*(b^4
*(a-b))^(1/2)/(a-b)*arctan((a-b)*b^2/(b^4*(a-b))^(1/2)/(a+b*cot(d*x+c)^2)^(1/2)*cot(d*x+c))-1/d*a^3*(b^4*(a-b)
)^(1/2)/b^2/(a-b)*arctan((a-b)*b^2/(b^4*(a-b))^(1/2)/(a+b*cot(d*x+c)^2)^(1/2)*cot(d*x+c))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \cot \left (d x + c\right )^{2} + a\right )}^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c)^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*cot(d*x + c)^2 + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (b\,{\mathrm {cot}\left (c+d\,x\right )}^2+a\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cot(c + d*x)^2)^(5/2),x)

[Out]

int((a + b*cot(c + d*x)^2)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \cot ^{2}{\left (c + d x \right )}\right )^{\frac {5}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c)**2)**(5/2),x)

[Out]

Integral((a + b*cot(c + d*x)**2)**(5/2), x)

________________________________________________________________________________________